Basildon

February 24, 2024

Contents
1 A static website generator 1
1.1 Quickstart 1
1.2 Content 2
1.3 Templates 2
1.4 Assets (stylesheets and scripts) 2
1.5 Output 2
2 Content 3
2.1 Images 3
2.2 Shortcodes 4
2.2.1 Configuration oo 5
2.2.2 Example: Wikimedia Commons 5
2.2.3 Example: Flickr00, 6
3 Templates 6
3.1 Variables 7
3.2 Functions 7
3.3 Filters and escapers oo 8
4 Writing 8

1 A static website generator

Basildon is a simple static website generator written in PHP and supporting
Markdown content, Twig templates, SQLite, and outputs of HTML and PDF
(via LaTeX).

This documentation is also available as a PDF?.

1.1 Quick start

Prerequisites: PHP? (version 7.3 or higher) and Composer®.

1. composer create-project samwilson/basildon-skeleton mysite

Ibasildon-docs.pdf
2https://wuw.php.net/
Shttps://getcomposer.org/

2. cd mysite
3. ./vendor/bin/basildon build .

4. Edit files in the content/ and templates/ directories (for more details,
see below).

1.2 Content

Content goes in the content/ directory, in whatever structure is required. Each
file comprises two parts:

e a frontmatter block of Yaml-formatted metadata; and

o and a text body after the frontmatter, in any format (the file’s extension
should match this, e.g. the default .md for Markdown).

Read more about Content.*

1.3 Templates

Templates are written in the Twig® language, and can output to any format
required. Usually HTML is the target format, but LaTeX, XML, or anything
else is just as possible. Formats do have to have a file extension though (that’s
how they’re identified, in Basildon).

All templates live in the templates/ directory of a site. The structure within
that directory can be anything.

Read more about Templates.’

1.4 Assets (stylesheets and scripts)

Every stylesheet and script in the assets/ directory will be copied to output/assets/.
Images should be in the content/ directory; for more information, see the
Content documentation page”.

1.5 Output

All output is in the output/ directory of a site. This directory is ready to be
uploaded to a web server as the top level of the site.

The output/ directory is emptied on every run of Basildon. However, some-
times you need to be able to keep files or directories that persist. For example,
you might want output/ to be its own Git repository for Github Pages, or to
add a _redirects file for Netlify, or any number of other things. This is possible
with the output_exclude config key, which takes an array of regular expres-
sions to be matched against relative paths (these paths include the leading slash,
similar to page IDs). For example:

4content.html
Shttps://twig.symfony.com/
6templates .html
7content.html

output_exclude:
- "|/_redirects|"
- "|/\\.git-*|"

2 Content

This page details the content/ directory of a Basildon site. All pages of a site
live in the content directory: each is a separate text file, and the file names
and directory hierarchy are not prescribed. Content files have two parts: one,
a Yaml-formatted frontmatter, delimited by three hyphens; and two, a main
body that can be in any format. The file extension should match the format of
the body; often this is Markdown (.md), but it doesn’t have to be — you could
easily have all your content files be HTML if that suits your site better.
An example of a page file at content/topics/goats.md:

title: Goats
description: Goats are good example animals.

This is the part where we explain more about the ’goat’

Because content is usually in Markdown format®, there are some useful Mark-
down additions that can be used in content pages. The rest of this page explains
these.

All the metadata from content files is read into an SQLite? database when
a site is built, which can be queried in templates!? (see that page for more
information about how). The database can also be modified and the changes
written back to the content files!'!.

2.1 Images

Local images should be stored in the content/ directory, and included with
the normal Markdown syntax. Their file paths should be relative to their own
location and not start with a slash.

For example, an image file stored at content/images/file.png should be
referenced like this:

o From lorem.md as ! [Alt text] (images/file.png).

o From lorem/ipsum.md as ! [Alt text](../images/file.png).

For information about other assets such as stylesheets and scripts, see the Assets
section!? of the documentation overview.

8https://www.markdownguide.org/getting-started/
mttps://www.sqlite.org

1Otemplates .html

11writing .html

12index.html

topic.

2.2 Shortcodes

This section documents 'shortcodes’, which are what we call specific replacable
parts in a Markdown document. They are inline phrases or blocks of text such
as {foo} or {{{bar|id=123}}} which get replaced by the contents of templates
such as templates/shortcodes/foo.html.twigor templates/shortcodes/bar.tex.twig.

e Inline shortcodes are delimited by single braces and can contain any num-
ber of attributes, e.g.:

— Lorem {foo} ipsum with no parameters.

— Lorem {foo | bar=baz|bif="foo bar"} ipsum with two parame-
ters, the second of which contains a space.

— Lorem {foo bif} ipsum with a parameter with no value.

e Block shortcodes are delimited by triple braces at the beggining of lines,
e.g.

— A block of one line, with one parameter:

{{{quotation | cite="Author name"
Lorem ipsum

133

— A single-line block with one parameter:

{{{linebreak num=10}3}}

Shortcodes replace an earlier feature in Basildon called ’embeds’. The function-
ality of embeds can be achieved with shortcodes, along with a lot more.

The term ’shortcode’ (as well as the older ’embed’) comes from WordPress,
which has a similar function'®.

Shortcodes are a simple way to include images, videos, and summaries of

other web pages. For example, this is a photo from Wikimedia Commons:

13https://codex.wordpress.org/shortcode

Figure 1: The Co-op, Post Office, and Courthouse on Stirling Terrace in York,
Western Australia.

It is added to the source Markdown with this:
{{{commons |Co-0p, _Post_0Office,_Courthouse. jpgl}}}

All of the other information (image URL, caption, etc.) is retrieved from the
Commons API when the Markdown is rendered.
Shortcodes can be rendered to any output format; they’re not limited to

HTML.
2.2.1 Configuration

To configure a new shortcode, add a file to the templates’ directory, with a name
matching what you want to use in the Markdown.

The file templates/shortcodes/<shortcode-name>.<format>.twig to con-
tain the HTML or other output that should be output for the shortcode.

The following variables are available in shortcode templates:

e shortcode.name: the name of the shortcode, which will always be the
same as the template’s name.

o shortcode.attrs.foo: fetches an attribute by name.

o shortcode.attrs.1: fetches an unnamed attribute by number (starting
from 1).

o shortcode.body: for block shortcodes, fetches the entire body text.

2.2.2 Example: Wikimedia Commons
In any Markdown file:
{{{commons file=Example.jpgl}l}t}

In templates/shortcodes/commons.html.twig:

{% set commons = commons(shortcode.attr(’file’)) %}
<figure>

<img src="{{ image_url(commons.imageinfo.0.thumburl) }}"
width="{{ commons.imageinfo.0.thumbwidth }}"
height="{{ commons.imageinfo.0.thumbheight }2}"
alt="{{ commons.labels.en.value|escape(’html_attr’) }}"
/>

<figcaption>{{ commons.labels.en.value }}</figcaption>
</figure>

Note that this is also using the commons () Twig function, which is documented
separately!?.

2.2.3 Example: Flickr

In any Markdown file:
{{{flickr|id=123456}1}}

In templates/shortcodes/flickr.html.twig:

{% set flickr = flickr(shortcode.attrs.id) %}

<figure itemscope itemtype="http://schema.org/Imagelbject">
<img alt="An image from Flickr."
<figcaption>
<strong itemprop="name">{{ flickr.title }}{) if flickr.description
{% if flickr.description %}
{{ flickr.description|raw }}</span
{% endif %}

{% if flickr.dates.taken %}
{% set date = date_create(flickr.dates.taken) %}
<time datetime="{{ date.format(’c’) }}">{{ date.format(’Y F
{% endif %}
· via Flickr
· <a href="{{ flickr.license.url }}" rel="license" title

</figcaption>
</figure>

3 Templates

Templates in Basildon are all written in the Twig!'® templating language. They
can output any format that’s required. Basildon provides a few variables func-

14 /templates.html
5https://twig.symfony.com/

tions,

page.

3.1
1.

3.2

and filters for common website use cases; these are explained on this

Variables

page — An object representing the current page being rendered. It has the
following members:

e page.body: The unmodified body text, good for piping through fil-
ters such as md2html and md2latex.

e page.metadata: All the metadata defined in the page’s frontmatter.

o page.link(target): Creates a relative URL to another page.

database - The database, the most useful attribute of which is database.query(sql).

site — The site object, mostly used to access configuration values, e.g.
site.config.title.

Functions

commons (file_name) — Get information about a Wikimedia Commons'®

file.

. flickr (photo_id) — Get information about a Flickr'” photo. To use this,

you need to set the flickr.api_key and flickr.api_secret values in
your site’s config.local.yaml file.

grcode (text) — Returns an asset-directory path to a QR code SVG file,
such as /assets/8a482ae2afbb51a1de85b7eb9087f7cc2.svg. For exam-
ple:

wikidata(qid) — Returns information about the given Wikidata!® item.
For example, {{ wikidata('Q42') .descriptions.en.value }} will re-
turn something like "English writer and humorist”. To get the full de-
tails of the returned structure, see e.g. wikidata.org/wiki/Special:Entity-
Data/Q42.json'".

wikidata_query(sparql) — Returns the result of the Sparql query from
Wikidata. See the example in /example/templates/tag.html.twig?°

wikipedia(lang, title) — Returns an HTML extract of the given ar-
ticle. For example: {{wikipedia('en', 'Tag (metadata)') |raw}}

get_json(url) — Fetch JSON data from any URL. For example: {{get_json('https://api
22337') .0.profile.LongName}}

16https://commons.wikimedia.org/

https://wuw.flickr.com/

18https://wuw.wikidata.org/
https://www.wikidata.org/wiki/Special:EntityData/Q42. json
2Onttps://github.com/samwilson/basildon/blob/main/example/templates/tag.html.

twig

.wikitre

get_feeds(urls) — Fetch RSS or Atom feed items. The urls param-
eter can be a single URL string or an array, and the URLs can be of
the feed or the website for which to attempt autodiscovery. An array
is returned, each element of which is a Simplepie Item?!. For example:
{{get_json('https://samwilson.id.au/news.rss')}}

Filters and escapers

1. md2html — Filter markdown to HTML.

4

md2latex — Filter markdown to LaTeX.

escape('tex') — Escaper to use in TeX templates to escape characters
that have special meaning in TeX, e.g. {{ '$10'le('tex') }}. Thisis of-
ten used by wrapping the template in {% autoescape 'tex' %}{’% endautoescape %}

dirname and basename — Identical to PHP’s dirname()?? and basename()?3
functions. Useful for working with Basildon page IDs.

Writing

Basildon supports bulk writing of metadata into Markdown frontmatter.

All the metadata from content files is read into an SQLite?* database when
a site is built, and this database can be opened in any other programme and
edited. After being saved to the database, the build command can be run to
update the content/ directory files.

The whole workflow should be something like:

1.

Make sure your site is under version control, and has no outstanding
changes (to make it easier to track changes that will be made by Basildon).

Build your site: ./vendor/bin/basildon build .

Edit the database at ./cache/database/db.sqlite3 using a programme
such as DB Browser for SQLite?, and write the changes back to the same
file.

Run ./vendor/bin/basildon write .

Check the changes before committing them.

?Inttps://github.com/simplepie/simplepie/blob/1.8.0/src/Item. php
22https://www.php.net/manual/en/function.dirname.php
23nhttps://www.php.net/manual/en/function.basename.php
24nttps://wuw.sqlite.org

>https://sqlitebrowser.org/

